Deep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots
نویسندگان
چکیده
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detection of the location and size of the diseased areas. Since a reliable real time pose estimation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our method lies on the application of the deep Recurrent Convolutional Neural Networks (RCNNs) for the visual odometry task, where Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are used for the feature extraction and inference of dynamics across the frames, respectively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system achieves high translational and rotational accuracies for different types of endoscopic capsule robot trajectories.
منابع مشابه
EndoSensorFusion: Particle Filtering-Based Multi-sensory Data Fusion with Switching State-Space Model for Endoscopic Capsule Robots using Recurrent Neural Network Kinematics
A reliable, real time multi-sensor fusion functionality is crucial for localization of actively controlled nextgeneration endoscopic capsule robots, as an emerging minimally invasive diagnostic technology for the inspection of gastrointestinal (GI) tract and diagnosis of a wide range of diseases and pathologies. In this study, we propose a novel multi-sensor fusion approach based on switching o...
متن کاملEndoSensorFusion: Particle Filtering-Based Multi-sensory Data Fusion with Switching State-Space Model for Endoscopic Capsule Robots
A reliable, real time multi-sensor fusion functionality is crucial for localization of actively controlled capsule endoscopy robots, which are an emerging, minimally invasive diagnostic and therapeutic technology for the gastrointestinal (GI) tract. In this study, we propose a novel multi-sensor fusion approach based on a particle filter that incorporates an online estimation of sensor reliabil...
متن کاملA Deep Learning Based 6 Degree-of-Freedom Localization Method for Endoscopic Capsule Robots
We present a robust deep learning based 6 degrees-of-freedom (DoF) localization system for endoscopic capsule robots. Our system mainly focuses on localization of endoscopic capsule robots inside the GI tract using only visual information captured by a mono camera integrated to the robot. The proposed system is a 23-layer deep convolutional neural network (CNN) that is capable to estimate the p...
متن کاملImproved Inception-Residual Convolutional Neural Network for Object Recognition
Machine learning and computer vision have driven many of the greatest advances in the modeling of Deep Convolutional Neural Networks (DCNNs). Nowadays, most of the research has been focused on improving recognition accuracy with better DCNN models and learning approaches. The recurrent convolutional approach is not applied very much, other than in a few DCNN architectures. On the other hand, In...
متن کاملLearning Visual Odometry with a Convolutional Network
We present an approach to predicting velocity and direction changes from visual information (”visual odometry”) using an end-to-end, deep learning-based architecture. The architecture uses a single type of computational module and learning rule to extract visual motion, depth, and finally odometry information from the raw data. Representations of depth and motion are extracted by detecting sync...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 275 شماره
صفحات -
تاریخ انتشار 2018